skkda package¶
Submodules¶
skkda.base module¶
Scikit-learn-compatible Kernel Discriminant Analysis.
Used in David Diaz-Vico, Jose R. Dorronsoro “Deep vs Kernel Fisher Discriminant Analysis”
Based on algorithm 5 in Zhihua Zhang, Guang Dai, Congfu Xu, Michael I. Jordan “Regularized Discriminant Analysis, Ridge Regression and Beyond” http://www.jmlr.org/papers/v11/zhang10b.html
@author: David Diaz Vico @license: MIT
-
class
skkda.base.
KernelDiscriminantAnalysis
(lmb=0.001, kernel='rbf', degree=3, gamma=None, coef0=1)[source]¶ Bases:
sklearn.base.BaseEstimator
,sklearn.base.ClassifierMixin
,sklearn.base.TransformerMixin
Kernel Discriminant Analysis.
Parameters: - lmb (float (>= 0.0), default=0.001) – Regularization parameter
- kernel ({"chi2", "laplacian", "linear", "polynomial", "rbf", "sigmoid"},) – default=’rbf’ Kernel.
- degree (integer, default=3) –
- gamma (float, default=None) –
- coef0 (integer, default=1) –
Module contents¶
Scikit-learn-compatible Kernel Discriminant Analysis.
@author: David Diaz Vico @license: MIT