skdatasets.utils.experiment.ScoresInfo

class skdatasets.utils.experiment.ScoresInfo(dataset_names: Sequence[str], estimator_names: Sequence[str], scores: ndarray[Any, dtype[float]], scores_mean: ndarray[Any, dtype[float]], scores_std: ndarray[Any, dtype[float]])[source]

Class containing the scores of several related experiments.

dataset_names

Name of the datasets, with the same order in which are present in the rows of the scores.

Type:

Sequence of str

estimator_names

Name of the estimators, with the same order in which are present in the columns of the scores.

Type:

Sequence of str

scores

Test scores. It has size n_datasets \(\times\) n_estimators \(\times\) n_partitions.

Type:

numpy.ndarray

scores_mean

Test score means. It has size n_datasets \(\times\) n_estimators.

Type:

numpy.ndarray

scores_std

Test score standard deviations. It has size n_datasets \(\times\) n_estimators.

Type:

numpy.ndarray

See also

fetch_scores

__init__(dataset_names: Sequence[str], estimator_names: Sequence[str], scores: ndarray[Any, dtype[float]], scores_mean: ndarray[Any, dtype[float]], scores_std: ndarray[Any, dtype[float]]) None

Methods

__init__(dataset_names, estimator_names, ...)

Attributes

dataset_names

estimator_names

scores

scores_mean

scores_std