skdatasets.repositories.raetsch.fetch¶
- skdatasets.repositories.raetsch.fetch(name: str, data_home: Optional[str] = None, *, return_X_y: Literal[False] = False) Bunch [source]¶
- skdatasets.repositories.raetsch.fetch(name: str, data_home: Optional[str] = None, *, return_X_y: Literal[True]) Tuple[ndarray[Any, dtype[float]], ndarray[Any, dtype[Union[int, float]]]]
Fetch Gunnar Raetsch’s dataset.
Fetch a Gunnar Raetsch’s benchmark dataset by name. Availabe datasets are ‘banana’, ‘breast_cancer’, ‘diabetis’, ‘flare_solar’, ‘german’, ‘heart’, ‘image’, ‘ringnorm’, ‘splice’, ‘thyroid’, ‘titanic’, ‘twonorm’ and ‘waveform’. More info at https://github.com/tdiethe/gunnar_raetsch_benchmark_datasets.
- Parameters:
name (string) – Dataset name.
data_home (string or None, default None) – Specify another download and cache folder for the data sets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.
return_X_y (bool, default=False) – If True, returns
(data, target)
instead of a Bunch object.
- Returns:
data (Bunch) – Dictionary-like object with all the data and metadata.
(data, target) (tuple if
return_X_y
is True)