skdatasets.repositories.keel.fetch¶
- skdatasets.repositories.keel.fetch(collection: str, name: str, data_home: Optional[str] = None, nfolds: Literal[None, 1, 5, 10] = None, dobscv: bool = False, *, return_X_y: Literal[False] = False) Bunch [source]¶
- skdatasets.repositories.keel.fetch(collection: str, name: str, data_home: Optional[str] = None, nfolds: Literal[None, 1, 5, 10] = None, dobscv: bool = False, *, return_X_y: Literal[True]) Tuple[ndarray[Any, dtype[float]], ndarray[Any, dtype[Union[int, float]]]]
Fetch Keel dataset.
Fetch a Keel dataset by collection and name. More info at http://sci2s.ugr.es/keel.
- Parameters:
collection (string) – Collection name.
name (string) – Dataset name.
data_home (string or None, default None) – Specify another download and cache folder for the data sets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.
nfolds (int, default=None) – Number of folds. Depending on the dataset, valid values are {None, 1, 5, 10}.
dobscv (bool, default=False) – If folds are in {5, 10}, indicates that the cv folds are distribution optimally balanced stratified. Only available for some datasets.
return_X_y (bool, default=False) – If True, returns
(data, target)
instead of a Bunch object.kwargs (dict) – Optional key-value arguments
- Returns:
data (Bunch) – Dictionary-like object with all the data and metadata.
(data, target) (tuple if
return_X_y
is True)